Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.

Identifieur interne : 000433 ( Main/Exploration ); précédent : 000432; suivant : 000434

Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.

Auteurs : Ryan J. Mailloux [Canada] ; Jason R. Treberg [Canada]

Source :

RBID : pubmed:26773874

Descripteurs français

English descriptors

Abstract

At its core mitochondrial function relies on redox reactions. Electrons stripped from nutrients are used to form NADH and NADPH, electron carriers that are similar in structure but support different functions. NADH supports ATP production but also generates reactive oxygen species (ROS), superoxide (O2(·-)) and hydrogen peroxide (H2O2). NADH-driven ROS production is counterbalanced by NADPH which maintains antioxidants in an active state. Mitochondria rely on a redox buffering network composed of reduced glutathione (GSH) and peroxiredoxins (Prx) to quench ROS generated by nutrient metabolism. As H2O2 is quenched, NADPH is expended to reactivate antioxidant networks and reset the redox environment. Thus, the mitochondrial redox environment is in a constant state of flux reflecting changes in nutrient and ROS metabolism. Changes in redox environment can modulate protein function through oxidation of protein cysteine thiols. Typically cysteine oxidation is considered to be mediated by H2O2 which oxidizes protein thiols (SH) forming sulfenic acid (SOH). However, problems begin to emerge when one critically evaluates the regulatory function of SOH. Indeed SOH formation is slow, non-specific, and once formed SOH reacts rapidly with a variety of molecules. By contrast, protein S-glutathionylation (PGlu) reactions involve the conjugation and removal of glutathione moieties from modifiable cysteine residues. PGlu reactions are driven by fluctuations in the availability of GSH and oxidized glutathione (GSSG) and thus should be exquisitely sensitive to changes ROS flux due to shifts in the glutathione pool in response to varying H2O2 availability. Here, we propose that energy metabolism-linked redox signals originating from mitochondria are mediated indirectly by H2O2 through the GSH redox buffering network in and outside mitochondria. This proposal is based on several observations that have shown that unlike other redox modifications PGlu reactions fulfill the requisite criteria to serve as an effective posttranslational modification that controls protein function.

DOI: 10.1016/j.redox.2015.12.010
PubMed: 26773874
PubMed Central: PMC4731959


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.</title>
<author>
<name sortKey="Mailloux, Ryan J" sort="Mailloux, Ryan J" uniqKey="Mailloux R" first="Ryan J" last="Mailloux">Ryan J. Mailloux</name>
<affiliation wicri:level="1">
<nlm:affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada. Electronic address: rjmailloux@mun.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Treberg, Jason R" sort="Treberg, Jason R" uniqKey="Treberg J" first="Jason R" last="Treberg">Jason R. Treberg</name>
<affiliation wicri:level="4">
<nlm:affiliation>University of Manitoba, Department of Biological Sciences, Winnipeg, Manitoba, Canada; Department of Human Nutritional Sciences, Winnipeg, Manitoba, Canada; Centre on Aging, Winnipeg, Manitoba, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>University of Manitoba, Department of Biological Sciences, Winnipeg, Manitoba, Canada; Department of Human Nutritional Sciences, Winnipeg, Manitoba, Canada; Centre on Aging, Winnipeg, Manitoba</wicri:regionArea>
<orgName type="university">Université du Manitoba</orgName>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26773874</idno>
<idno type="pmid">26773874</idno>
<idno type="doi">10.1016/j.redox.2015.12.010</idno>
<idno type="pmc">PMC4731959</idno>
<idno type="wicri:Area/Main/Corpus">000468</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000468</idno>
<idno type="wicri:Area/Main/Curation">000468</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000468</idno>
<idno type="wicri:Area/Main/Exploration">000468</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.</title>
<author>
<name sortKey="Mailloux, Ryan J" sort="Mailloux, Ryan J" uniqKey="Mailloux R" first="Ryan J" last="Mailloux">Ryan J. Mailloux</name>
<affiliation wicri:level="1">
<nlm:affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada. Electronic address: rjmailloux@mun.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Treberg, Jason R" sort="Treberg, Jason R" uniqKey="Treberg J" first="Jason R" last="Treberg">Jason R. Treberg</name>
<affiliation wicri:level="4">
<nlm:affiliation>University of Manitoba, Department of Biological Sciences, Winnipeg, Manitoba, Canada; Department of Human Nutritional Sciences, Winnipeg, Manitoba, Canada; Centre on Aging, Winnipeg, Manitoba, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>University of Manitoba, Department of Biological Sciences, Winnipeg, Manitoba, Canada; Department of Human Nutritional Sciences, Winnipeg, Manitoba, Canada; Centre on Aging, Winnipeg, Manitoba</wicri:regionArea>
<orgName type="university">Université du Manitoba</orgName>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Redox biology</title>
<idno type="eISSN">2213-2317</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Energy Metabolism (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Disulfide (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>NADP (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Disulfure de glutathion (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Mitochondries (métabolisme)</term>
<term>Métabolisme énergétique (MeSH)</term>
<term>NADP (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Glutathione Disulfide</term>
<term>Hydrogen Peroxide</term>
<term>NADP</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Disulfure de glutathion</term>
<term>Espèces réactives de l'oxygène</term>
<term>Glutathion</term>
<term>Mitochondries</term>
<term>NADP</term>
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Energy Metabolism</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Protein Processing, Post-Translational</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Métabolisme énergétique</term>
<term>Oxydoréduction</term>
<term>Stress oxydatif</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">At its core mitochondrial function relies on redox reactions. Electrons stripped from nutrients are used to form NADH and NADPH, electron carriers that are similar in structure but support different functions. NADH supports ATP production but also generates reactive oxygen species (ROS), superoxide (O2(·-)) and hydrogen peroxide (H2O2). NADH-driven ROS production is counterbalanced by NADPH which maintains antioxidants in an active state. Mitochondria rely on a redox buffering network composed of reduced glutathione (GSH) and peroxiredoxins (Prx) to quench ROS generated by nutrient metabolism. As H2O2 is quenched, NADPH is expended to reactivate antioxidant networks and reset the redox environment. Thus, the mitochondrial redox environment is in a constant state of flux reflecting changes in nutrient and ROS metabolism. Changes in redox environment can modulate protein function through oxidation of protein cysteine thiols. Typically cysteine oxidation is considered to be mediated by H2O2 which oxidizes protein thiols (SH) forming sulfenic acid (SOH). However, problems begin to emerge when one critically evaluates the regulatory function of SOH. Indeed SOH formation is slow, non-specific, and once formed SOH reacts rapidly with a variety of molecules. By contrast, protein S-glutathionylation (PGlu) reactions involve the conjugation and removal of glutathione moieties from modifiable cysteine residues. PGlu reactions are driven by fluctuations in the availability of GSH and oxidized glutathione (GSSG) and thus should be exquisitely sensitive to changes ROS flux due to shifts in the glutathione pool in response to varying H2O2 availability. Here, we propose that energy metabolism-linked redox signals originating from mitochondria are mediated indirectly by H2O2 through the GSH redox buffering network in and outside mitochondria. This proposal is based on several observations that have shown that unlike other redox modifications PGlu reactions fulfill the requisite criteria to serve as an effective posttranslational modification that controls protein function.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26773874</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>11</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2213-2317</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2016</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>Redox biology</Title>
<ISOAbbreviation>Redox Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.</ArticleTitle>
<Pagination>
<MedlinePgn>110-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2015.12.010</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S2213-2317(15)30025-2</ELocationID>
<Abstract>
<AbstractText>At its core mitochondrial function relies on redox reactions. Electrons stripped from nutrients are used to form NADH and NADPH, electron carriers that are similar in structure but support different functions. NADH supports ATP production but also generates reactive oxygen species (ROS), superoxide (O2(·-)) and hydrogen peroxide (H2O2). NADH-driven ROS production is counterbalanced by NADPH which maintains antioxidants in an active state. Mitochondria rely on a redox buffering network composed of reduced glutathione (GSH) and peroxiredoxins (Prx) to quench ROS generated by nutrient metabolism. As H2O2 is quenched, NADPH is expended to reactivate antioxidant networks and reset the redox environment. Thus, the mitochondrial redox environment is in a constant state of flux reflecting changes in nutrient and ROS metabolism. Changes in redox environment can modulate protein function through oxidation of protein cysteine thiols. Typically cysteine oxidation is considered to be mediated by H2O2 which oxidizes protein thiols (SH) forming sulfenic acid (SOH). However, problems begin to emerge when one critically evaluates the regulatory function of SOH. Indeed SOH formation is slow, non-specific, and once formed SOH reacts rapidly with a variety of molecules. By contrast, protein S-glutathionylation (PGlu) reactions involve the conjugation and removal of glutathione moieties from modifiable cysteine residues. PGlu reactions are driven by fluctuations in the availability of GSH and oxidized glutathione (GSSG) and thus should be exquisitely sensitive to changes ROS flux due to shifts in the glutathione pool in response to varying H2O2 availability. Here, we propose that energy metabolism-linked redox signals originating from mitochondria are mediated indirectly by H2O2 through the GSH redox buffering network in and outside mitochondria. This proposal is based on several observations that have shown that unlike other redox modifications PGlu reactions fulfill the requisite criteria to serve as an effective posttranslational modification that controls protein function.</AbstractText>
<CopyrightInformation>Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mailloux</LastName>
<ForeName>Ryan J</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada. Electronic address: rjmailloux@mun.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Treberg</LastName>
<ForeName>Jason R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>University of Manitoba, Department of Biological Sciences, Winnipeg, Manitoba, Canada; Department of Human Nutritional Sciences, Winnipeg, Manitoba, Canada; Centre on Aging, Winnipeg, Manitoba, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Redox Biol</MedlineTA>
<NlmUniqueID>101605639</NlmUniqueID>
<ISSNLinking>2213-2317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004734" MajorTopicYN="Y">Energy Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="Y">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="Y">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">Glutathione</Keyword>
<Keyword MajorTopicYN="Y">Glutathionylation</Keyword>
<Keyword MajorTopicYN="Y">Hydrogen peroxide</Keyword>
<Keyword MajorTopicYN="Y">Mitochondria</Keyword>
<Keyword MajorTopicYN="Y">Redox signaling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>12</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>12</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26773874</ArticleId>
<ArticleId IdType="pii">S2213-2317(15)30025-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.redox.2015.12.010</ArticleId>
<ArticleId IdType="pmc">PMC4731959</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2012 Aug 3;287(32):27255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22689576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Jan 15;26(2):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25392302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Aug 15;53(4):962-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22634394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2015 Jul 1;469(1):25-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25891661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol. 1956 Jul;11(3):298-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13332224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Mar;80:164-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25277419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 May 12;48(18):3813-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19292455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2015;4:381-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25744690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015;10(4):e0118752</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25849935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2012 Oct;13(10):909-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22945481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Rep. 2001;6(4):229-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11642713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Aug 1;15(3):795-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20969484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Jul 11;194(1):7-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21746850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 10;276(32):30374-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11397793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2015 Aug 4;22(2):207-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26166745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 13;276(28):26269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 21;289(12):8312-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24515115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Dec 15;17(12):1764-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22369136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2015 Nov 25;6:347</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26635632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2012 Sep;23(9):451-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22591987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Dec 26;289(52):36125-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25362663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 16;287(47):39673-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23035124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2015 Jul 23;22(7):965-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26165157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Apr 15;435(2):297-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 May 23;289(21):14812-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24727547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Oct 1;15(7):1957-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21087145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):999-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Oct;1827(10):1156-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23800966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2013;1:586-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25126518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Oct 13;416(1):15-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9369223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 9;282(45):32640-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Mar 22;288(12):8365-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23335511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Mar;80:158-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25499854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2014;2:123-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24455476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 28;285(22):17077-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Feb 25;120(4):483-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Aug;1844(8):1344-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24561273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1034-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20100455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2015 May;396(5):465-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1981 Sep;210(2):505-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7305340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Nov;11(11):2685-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Jun;11(6):1373-414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19187004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr Rev. 2015 Dec;73(12):858-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26493322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Dec;65:1201-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24056031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2014 Jan;66:24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23747930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 5;283(36):24801-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18611857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2005 May;77(5):598-625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15689384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 May 1;46(9):1283-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19245829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Nutr. 2000 Apr;39(2):53-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10918985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2007 Nov 14;129(45):14082-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17939659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2013;1:304-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24024165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2015 Sep 20;23(9):734-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25891126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Nov 18;286(46):40184-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21930693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2013 Jan 22;104(2):332-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23442855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Jan;78:1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25451644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Trace Elem Electrolytes Health Dis. 1991 Dec;5(4):271-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1668318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Feb;79:56-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jan 8;47(1):473-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18081316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2013 Dec;38(12):592-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24120033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2011 May 7;47(17):4989-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21437321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2012;5(242):pe39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22990116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Dev Biol. 2014 Nov 17;2:68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25453035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Nov;1830(11):5299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23948593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2011 Feb;15(1):113-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21130023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 1;417(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Dec 4;159(6):1253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25480291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 28;289(13):8735-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24515117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2015 Aug;5:216-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26001520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2015 Apr 15;467(2):271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25643703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 17;286(24):21865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21515686</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Manitoba</li>
</region>
<settlement>
<li>Winnipeg</li>
</settlement>
<orgName>
<li>Université du Manitoba</li>
</orgName>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Mailloux, Ryan J" sort="Mailloux, Ryan J" uniqKey="Mailloux R" first="Ryan J" last="Mailloux">Ryan J. Mailloux</name>
</noRegion>
<name sortKey="Treberg, Jason R" sort="Treberg, Jason R" uniqKey="Treberg J" first="Jason R" last="Treberg">Jason R. Treberg</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000433 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000433 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26773874
   |texte=   Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26773874" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020